

o make and

Aim for the sky and turn a piece of paper into a soaring kite.

What you need

- One piece of A4 paper
- Ruler
- Pencil
- Stapler Scissors
- Sticky tape
- Hole punch

TOP TIP

This kite works

well in a good

breeze rather than

strong winds.

- Light string (about six metres)

LET'S GO **FLY A KITE!** The largest kite ever flown was 25.47 metres long and 40 metres wide. That's about as big as four tennis courts.

The record was set in

Kuwait in 2005.

Take a piece of A4 paper and fold in half.

Fold over the top left corner to touch the first dot. Hold in place, but do NOT make a crease.

Ask an adult to help you a punch a hole, using a hole punch, on the second dot.

How does it work?

There are four forces at work on any object in flight: lift, weight, thrust and drag. Lift is the upward force that keeps your kite in the air. This is created when air moves across the special shape of a wing. Lift counteracts the opposing force of

Things to make and do

🗾 Using a ruler, measure 5cm from one edge, on the **C** folded side, and mark a small dot.

Repeat on the other side. Pinch the corners biggether at the first dot and staple them together.

Thread one end of the string through the hole, then tie a knot to secure it.

Measure another 5cm further along from the first dot and mark a second dot.

Cut a length of sticky tape. Stick it over the crease to cover the second dot on both sides of the paper.

Tie the other end of the string to the pencil. Wrap the string round the pencil – you're ready to fly!

gravity. This downward force, created by the gravitational pull of the planet, wants to keep your kite on the ground. To fly, the lift force needs to be equal to, or greater than, gravity. When lift is greater than gravity, your kite will rise. When you pull your kite

forward using the string, you generate a forward-acting force called thrust. Its evil twin is called drag. This backward-acting force slows the kite down, and is mostly caused by friction when air moves across the kite.